

Stand: 13.02.2025

Inhalt

1	1 Allgemeine Hinweise	5
	1.1 Zu dieser Bedienungsanleitung	5
	1.2 Voraussetzungen für den Betrieb des Gerätes	6
	1.2.1 Bestimmungsgemäße Verwendung	
	1.2.2 Produkthaftung	6
	1.3 Allgemeine Sicherheitsvorschriften	7
	1.3.1 Pflichten des Betreibers 1.3.2 Personaleinsatz	
	1.3.3 Schutzeinrichtungen	
	1.3.4 Hinweis auf mögliche Störung von USB-Geräten	
	1.3.5 Hinweise auf weiterführende Schriften	
2	2 Beschreibung	9
	2.1 Gerätefunktionen	9
	2.2 Technische Daten	10
	2.3 Aufbau des Gerätes	13
	2.3.1 Frontseite	
3	3 Inbetriebnahme	15
	3.1 Voraussetzungen	15
	3.2 Gerät anschließen	15
	3.3 Gerät einschalten	15
	3.4 Gerät ausschalten	15
4	4 Bedienung	16
	4.1 Erklärung der Bedienelemente	16
	4.2 Startbildschirm / Hauptmenü	16
	4.3 Wechsel des Prüfprogrammes	17
5	5 Durchführen von Prüfungen	18
	5.1 Übersicht	
	5.2 Bildschirmanzeige während eines Prüfschrittes	19
	5.3 Anzeige von Prüfungen mit GUT/FEHLER Ergebnis	20
	5.4 Einsicht der Prüfergebnisse	21
6	6 Erstellen von Prüfprogrammen	22
	6.1 Allgemeines	
	6.2 Verwalten von Prüfprogrammen	22
	6.3 Editieren eines Prüfprogrammes	24
	6.3.1 RES: Widerstandsprüfung	
	6.3.2 GB: Schutzleiter-Prüfung (Ground Bond)	

	6.3.3 HPAC: Hochspannungsprüfung AC	
	6.3.4 HPDC: Hochspannungsprüfung DC	
	6.3.5 IR: Isolationswiderstands-Prüfung	
	6.3.6 LC: Ableitstrom-Prüfung	
	6.3.7 FP: Funktions-Leistungs-Prüfung	
	6.3.8 TXT: Text-Schritt	
7 We	eitere Funktionen und Einstellungen	33
7.1	1 Einzeltest	
7.2	2 Benutzerverwaltung	
	5	
Anha	ang	35
Anha A	ang Schnittstellenbelegung	35 35
Anha A	ang Schnittstellenbelegung A-1 Externe I/O Schnittstelle "SIGNAL IO"	35 35
Anha A	ang Schnittstellenbelegung A-1 Externe I/O Schnittstelle "SIGNAL IO" A-2 Rückwärtige Anschlüsse für Prüfspannungen	35 35
Anha A	ang Schnittstellenbelegung A-1 Externe I/O Schnittstelle "SIGNAL IO" A-2 Rückwärtige Anschlüsse für Prüfspannungen A-3 Probe Anschluss PROBE	35
Anha A	A-1 Externe I/O Schnittstelle "SIGNAL IO" A-2 Rückwärtige Anschlüsse für Prüfspannungen A-3 Probe Anschluss PROBE A-4 Anschluss für externe Funktionsspannung EXT.SUPPLY	35
Anha A	ang Schnittstellenbelegung A-1 Externe I/O Schnittstelle "SIGNAL IO" A-2 Rückwärtige Anschlüsse für Prüfspannungen A-3 Probe Anschluss PROBE A-4 Anschluss für externe Funktionsspannung EXT.SUPPLY A-5 Anschluss für externes Schutzkreis-Signal EXT.SK	35

1 Allgemeine Hinweise

1.1 Zu dieser Bedienungsanleitung

Diese Betriebsanleitung ist Teil der Technischen Dokumentation für die Sicherheitstester S 6600 / S 6700 der SPS electronic GmbH.

Die Betriebsanleitung enthält alle Informationen, dieses Gerät bestimmungsgemäß, sicher und wirtschaftlich zu betreiben, Gefahren zu vermeiden, Reparaturkosten und Ausfallzeiten zu vermindern sowie die Lebensdauer der Geräte zu erhöhen.

Sollten Ihnen beim Lesen dieser Betriebsanleitung Druckfehler, unverständliche Informationen oder Fehlinformationen auffallen, bitten wir Sie, diese der SPS electronic GmbH mitzuteilen.

Piktogramme und Symbole

• Warnungen sind gekennzeichnet durch Warndreiecke mit Gefahrensymbol und warnen vor Gefahren, die zu Sach- und/oder Personenschäden führen können:

Allgemeine Warnung

Gefahr durch elektrischen Strom oder Spannung

• **Hinweise** sind gekennzeichnet durch das Informations-Piktogramm und enthalten Empfehlungen oder zusätzliche Informationen:

Sie können das Zubehör direkt bei der SPS electronic GmbH beziehen.

• Fortsetzungen zusammenhängender Abschnitte auf der Folgeseite sind gekennzeichnet durch das Symbol 🖉 am rechten Seitenrand.

1.2 Voraussetzungen für den Betrieb des Gerätes

1.2.1 Bestimmungsgemäße Verwendung

Das Prüfgerät muss in funktionsfähigem und betriebssicherem Zustand sein.

Alle Arbeiten mit und an Prüfgeräten dürfen nur autorisierte Elektrofachkräfte oder elektrotechnisch unterwiesene Personen durchführen, die diese Betriebsanleitung vollständig gelesen und verstanden haben.

Der Betrieb des Prüfgerätes ist insbesondere unzulässig bei:

- Arbeiten nach Vorgehensweisen bei Montage, Betrieb, Instandhaltung und Wartung, die in dieser Betriebsanleitung nicht beschrieben werden oder von der SPS electronic GmbH nicht empfohlen sind
- Eigenmächtigen Umbauten und/oder Reparaturen
- Demontage und/oder Umgehen von Sicherheitseinrichtungen
- Einsatz von Bauteilen, Werkzeugen, Zusatzeinrichtungen, Hilfsmitteln und Betriebsstoffen, die von der SPS electronic GmbH nicht freigegeben oder empfohlen sind
- Einbau von Ersatzteilen, die keine Original-Ersatzteile der SPS electronic GmbH oder eines von der SPS electronic GmbH empfohlenen Lieferanten sind

1.2.2 Produkthaftung

Die Prüfgeräte sind ausgeführt, eingestellt und geprüft nach dem Stand der Technik und den anerkannten sicherheitstechnischen Regeln.

Die Geräte erfüllen die vertraglich vereinbarten Bestimmungen der Auftragsbestätigung in Bezug auf Ausführung, Einzelteil- und Zubehörauswahl.

Die SPS electronic GmbH haftet für Fehler oder Unterlassungen im Rahmen der Gewährleistungsverpflichtung der Auftragsbestätigung.

Es gelten die Gewährleistungs- und Haftungsbedingungen entsprechend den allgemeinen Lieferbedingungen des Zentralverbands Elektrotechnik- und Elektronikindustrie e.V. (ZVEI)

Der Inhalt dieser Betriebsanleitung entspricht dem Zustand des Prüfgerätes zum Zeitpunkt ihrer Erstellung. Technische Änderungen sind aufgrund stetiger Weiterentwicklung und Verbesserung der Produkte der SPS electronic GmbH vorbehalten.

Aus dem Inhalt dieser Betriebsanleitung (Daten, Beschreibungen, Grafiken, Druckfehler etc.) können deshalb keine Haftungsansprüche hergeleitet werden.

Der Irrtum ist vorbehalten!

Die SPS electronic GmbH haftet nur bei bestimmungsgemäßer Verwendung der Prüfgeräte (siehe 1.2.1).

Bei nicht bestimmungsgemäßer Verwendung trägt allein der Betreiber das Risiko der Gefährdung von Leib und Leben des Benutzers oder Dritter sowie Beeinträchtigungen des Prüfgerätes und anderer Sachwerte!

1.3 Allgemeine Sicherheitsvorschriften

Die Sicherheitstester S 6600 / S 6700 sind nach dem Stand der Technik zum Zeitpunkt der Auslieferung hergestellt. Trotzdem können von dem Prüfgerät Gefahren ausgehen, wenn es von nicht ausgebildetem Personal, unsachgemäß oder nicht zur bestimmungsgemäßen Verwendung eingesetzt wird.

Ergänzend zu dieser Betriebsanleitung müssen die allgemeingültigen gesetzlichen Regeln und die sonstigen verbindlichen Richtlinien zur Arbeitssicherheit, zur Unfallverhütung und zum Umweltschutz eingehalten werden.

Warnung vor hoher elektronischer Spannung und elektromagnetischem Feld Durch Prüflingsdefekte wie z.B. Überschläge, können elektromagnetische Felder entstehen. Besonders betroffen sind hier Personen mit Herzschrittmachern oder anderen aktiven oder passiven Körperhilfen.

1.3.1 Pflichten des Betreibers

- Das Prüfgerät darf nur bestimmungsgemäß und in funktionsfähigem Zustand betrieben werden (siehe Kap.1.2.1)
- Schutz- und Sicherheitseinrichtungen, Verriegelungen und Koppelungen etc. müssen mindestens einmal jährlich durch einen Sachkundigen geprüft werden.
- Die Prüfergebnisse müssen in einer Prüfbescheinigung protokolliert werden und sind aufzubewahren.
- Für Arbeiten mit bzw. an einer Maschine oder Einrichtung, von der Gefahr für Gesundheit und/oder Leben von Personen ausgeht, besteht Unterweisungspflicht.
- Personen, die mit und am S 6600 / S 6700 arbeiten, müssen durch ihre Unterschrift bestätigen, dass sie diese Betriebsanleitung, insbesondere die Sicherheitshinweise, gelesen und verstanden haben.
- Gefahrenstellen, die durch die Einbindung des Pr
 üfger
 ätes in eine Anlage oder ein Ger
 ät entstehen, sind vom Betreiber zu ermitteln und zu sichern.
 Bei Zusammenstellung oder Installation von Ger
 äten, Anlagen oder Betriebsmitteln verschiedener

Hersteller oder Lieferanten sowie nach Umbauarbeiten durch betriebseigenes oder durch Service-Personal, bei denen Eingriffe in die elektrische Ausrüstung erfolgen, muss der Betreiber vor der Inbetriebnahme eine präzise Prüfung nach Unfallverhütungsvorschrift VBG 4 entsprechend den jeweiligen anzuwendenden elektrotechnischen Regeln durchführen.

1.3.2 Personaleinsatz

- Betriebsanleitung, Anleitungen und Vorschriften sind Bestandteil des Prüfgerätes und müssen für alle Personen, die mit und am S 6600 / S 6700 arbeiten, immer leicht zugänglich, lesbar und vollständig sein.
- Vor allen Arbeiten mit und am S 6600 / S 6700 sind Fragen oder Unklarheiten mit dem zuständigen Personal zu klären.
- Alle Arbeiten mit und am S 6600 / S 6700 dürfen nur Elektrofachkräfte oder elektrotechnisch unterwiesene Personen durchführen, die vom Betreiber dazu beauftragt wurden.
- Prüfpersonal darf nur unter Aufsicht einer Elektrofachkraft mit dem S 6600 / S 6700 arbeiten.
- Einstell-, Wartungs- und Inspektionsarbeiten sind nach den vorgegebenen Anweisungen und fristgerecht durchzuführen.

1.3.3 Schutzeinrichtungen

Die Prüfgeräte S 6600 / S 6700 sind zum Schutz des Bedienpersonals mit folgenden Schutzeinrichtungen ausgestattet:

- Fehlerstrom-Schutzabschaltung beim Isolationstest und Hochspannungstest (Auslöseschwelle bei >3 mA rms, Abschaltgeschwindigkeit 6000 V \rightarrow 50 V < 100 µs)
- Schutzkleinspannung beim Schutzleitertest
- 16A-Sicherung für den Strompfad der Funktionsprüfung
- Anschluss für externes Schutzkreissignal

Kapazitive Prüflinge und DC-Hochspannung

Beim Prüfen mit DC-Hochspannung werden kapazitive Prüflinge aufgeladen. Am Ende einer Isolationsprüfung oder HV-DC Prüfung wird der Prüfling entladen, das GUT-/FEHLER-Signal wird erst nach Ende der Entladung ausgegeben. Deswegen müssen Prüfungen mit DC-Hochspannung immer kontrolliert bis zum Ende durchlaufen. Bei vorzeitigem Lösen der Kontaktierung, (oder auch: Ausschalten des Prüfgerätes, Ausfall der Netzspannung, ...) wird der Prüfling nicht entladen und kann noch mit gefährlich hoher Energie geladen sein!

Wenn solche Bedingungen durch entsprechende Prüflinge gegeben sind, müssen zwingend die Personenschutzmaßnahmen gemäß EN 50191 eingehalten werden!

1.3.4 Hinweis auf mögliche Störung von USB-Geräten

Bei Prüfungen mit Hochspannung besteht die Möglichkeit, dass durch fehlerhafte Prüflinge der Betrieb von USB-Geräten im unmittelbaren Umfeld der Prüfung gestört werden kann.

Sehen Sie bitte Anhang B zur Problembeschreibung und -vermeidung.

1.3.5 Hinweise auf weiterführende Schriften

Die Berufsgenossenschaften und Verbände haben zum Schutz von Personen folgendes Schrifttum veröffentlicht:

• DIN EN 50191	Errichten und Betreiben elektrischer Anlagen
• DIN EN 50274	Schutz gegen elektrischen Schlag – Schutz gegen unabsichtliches direktes Berühren gefährlicher aktiver Teile
• DIN 40 008 Teil 3	Sicherheitsschilder für die Elektrotechnik; Warnschilder und Zusatzschilder
• DIN 40 050	IP-Schutzarten; Berührungs-, Fremdkörper-, und Wasserschutz für elektrische Betriebsmittel
• DIN 57100	Bestimmungen für das Errichten von Starkstromanlagen mit Nennspannungen bis 1000 V
• BGI 891	Errichten und Betreiben von elektrischen Prüfanlagen

2 Beschreibung

2.1 Gerätefunktionen

Mit dem Sicherheitstester S 6600 / S 6700 lassen sich Sicherheitsprüfungen an Elektrogeräten nach genormten Prüfvorschriften (EN, IEC, VDE etc.) durchführen.

		S 6600H	S 6700H	S 6700U	S6600U	
GB:	Ground Bond Test	1 – 32 A AC		1 – 32 A AC		
RES:	Resistance Test	1 Ω – 1 ΜΩ		1 Ω – 1 ΜΩ		
IR:	Insulation Resistance Test	100–4000 V DC / 20 mA		100–6000 V DC / 20 mA		
HPAC:	Highpot Test AC	100–3000 V	′ AC / 20 mA	100–5500 V AC / 20 mA		
HPDC:	Highpot Test DC	100–4000 V DC / 20 mA		100–6000 V DC / 20 mA		
FP:	Function Power Test	Via external supp		oply, 120/230 V / 16 A		
LC:	Leakage Current Test	90 - 270		VAC / 10 mA		

Folgende Prüfungen sind mit dem Standardgerät möglich:

Das Prüfgerät arbeitet mit einem vollelektronischen Hochspannungsgenerator. Die Hochspannung wird während des Prüfbetiebes lastabhängig vollautomatisch nachgeregelt, wenn sich die eingestellte Prüfspannung einmal korrekt eingeregelt hat. 0

Wenn die Spannungsänderung zu schnell (>2% pro Vollwelle) ist, wird der Spannungseinbruch aber als Fehler erkannt.

2.2 Technische Daten

* MBE = Messbereichs-Endwert

Maße und Gewicht				
Breite / Tiefe / Höhe	ca. 480 / 490 / 133 mm (19" / 3 HE)			
Gewicht	ca. 20,0 kg			

Umgebung

emgesang	
Temperatur	Betrieb: 15 °C – 40 °C Lagerung: 5 °C – 60 °C
Luftfeuchtigkeit	max. 70 % (nicht kondensierend)
Umgebungsbedingungen zur Einhaltung der angegebenen technischen Spezifikationen	24 °C (\pm 3 °C) und max. 50% relative Luftfeuchtigkeit (nicht kondensierend)

Anschlussdaten				
Netzversorgung	Wide Range 90-253 V / 50-60 Hz			
Leistungsaufnahme	ca. 240 VA			

RES-Prüfung (Widerstandsprüfung) (Resistance)					
Prüfspannung/-strom	8 V DC / 10 mA				
Grenzwerte	1 Ω - 1 ΜΩ				
Messbereich	Bereich 1,0 Ω – 1,00 ΜΩ	Auflösung (2/3 digits) 0,1 / 1 / 0,01	Genauigkeit 5% vom Messwert ±1 digit		

GB-Prüfung (Schutzleiterprüfung) (Ground Bond)								
Prüfstrom	Programmierbar 1 A – 32 A AC, Schrittweite 1 A, Ausgabe +2%, Anzeigegenauigkeit ± 1,5%							
Leerlaufspannung 6 VAC								
Grenzwerte Programmierbar, stromabhängig bis max. 6 Ω								
Messbereich I Bereich 32 A		Auflösung 0,1 A			Genauigkeit 0,5% v. MBE			
Messbereich R	Bereich 0 bis 1 Ω 1 bis 6 Ω	Aufle 1 m 10 m		Auflösung (3 digits) 1 mΩ 10 mΩ		Genaui 1% v. M 1% v. M	gkeit Anzeige ⁄lesswert ±1 digi ⁄lesswert ±1 digi	t
Maximale Grenzwerte	Prüfstrom:	1	А	10 A	2	5 A	30 A	
stromabhängig	Widerstand:	6	Ω	600 mΩ	24	$0 \text{ m}\Omega$	200 mΩ	

LC-Prüfung (Ersatzableitstromprüfung) (Leakage Current) gemäß EN60990 / Bild 4					
Prüfspannung	Programmierbar von 100 bis 270 V AC, 50/60 Hz				
Kurzschlussstrom	≤ 100 mA AC				
Messbereich Strom	Bereich 0 bis 10 mA AC	Auflösung Anzeige 0,01 mA	Genauigkeit 1,5% v. MBE ± 0,1 mA		
Messbereich Spannung	Bereich 0 bis 270 V	Auflösung Anzeige 1 ∨	Genauigkeit 1,5% v. MBE		

IR-Prüfung (Isolationsprüfung) (Insulation Resistance)						
Prüfspannung	S6600U, S6700U: programmierbar von 100 bis 6000 V DC S6600H, S6700H: programmierbar von 100 bis 4000 V DC Restwelligkeit DC: < 3% gem. VDE 0432 / EN 61180					
Kurzschlussstrom	20 mA DC					
Grenzwerte:	Grenzwerte: Spannungsabhängig, max. 10 GΩ / kV					
Messbereich R :	Bereich (automatisch) 100 kΩ - 50,0 GΩ Genauigkeit (vom Wert) (für rein ohmsche Last)) Auflösung 3 digits rt) im Bereich				
	5% ± 1 digit 10% ± 1 digit	1 GΩ/kV 10 GΩ/kV				
Messbereich Spannung	Bereich (automatisch) 600 V DC 6000 V DC	Auflösung 1 V 1 V	Genauigkeit 1% v. MBE 0,2% v. MBE			

*Maximale kapazitive Last sollte $1\mu F$ pro Sekunde Rampenzeit nicht überschreiten. Ansonsten ist ein Überschwingen der Spannung nicht auszuschließen.

Die gesamte kapazitive Last darf 10µF nicht überschreiten, da sonst keine korrekte Entladung garantiert werden kann.

HV-Prüfung (Hochspannungsprüfung) (Hipot AC/DC)						
Prüfspannung	S6600U, S6700U: programmierbar von 100 bis 6000 VDC / 5500 VAC S6600H, S6700H: programmierbar von 100 bis 3000 VAC / 4000 VDC Restwelligkeit DC: < 3% gem. VDE 0432 / EN 61180					
Kurzschlussstrom	20 mA DC / 20 mA A	VC				
Messbereich Strom	Bereich 400 μA DC 20 mA DC 400 μA AC 20 mA AC	Auflösung 0,01 μA 0,01 mA 0,01 μA 0,01 μA	Genauigkeit 0,5% v. MBE 0,25% v. MBE 1,5% v. MBE 0,25% v. MBE			
Messbereich Spannung	Bereich 550 VAC / 600 VDC 5500 VAC / 6000 VDC	Auflösung Anzeige 1 ∨ 1 ∨	Genauigkeit 1,0% v. MBE 0,2% v. MBE			

*Maximale kapazitive Last sollte $1\mu F$ pro Sekunde Rampenzeit nicht überschreiten. Ansonsten ist ein Überschwingen der Spannung nicht auszuschließen.

Die gesamte kapazitive Last darf 10µF nicht überschreiten, da sonst keine korrekte Entladung garantiert werden kann.

FP-Prüfung (Funktionsprüfung) (Functional Power Test)				
Prüfspannung	Externe Einspeisung: bis 250 V AC (1 phasig) / bis 200 V DC			
Maximaler Strom	max. 16 A AC			
	max. 10 A DC			
Messbereich Strom	Bereich 0 bis 3 A 0 bis 16 A	Auflösung Anzeige 0,01 A 0,1 A	Genauigkeit 1,5% v. MBE 1,5% v. MBE	
Messbereich Spannung	Bereich 0 bis 400 V	Auflösung Anzeige 1 V	Genauigkeit 1,5% v. MBE	
Messbereich Cos Phi	Bereich 0 bis1	Auflösung Anzeige 0,01	Genauigkeit 2% v. MBE	

Die anderen Kennwerte werden aus diesen Messwerten berechnet.

I/O-Prüfung		
Eingänge 1 – 4	Eingangsspannung:	24 V DC ± 10% zu PIN 7 - 10 +24 V auf PIN 11+12
	Eingangswiderstand:	6,6 kΩ
	Ausgangsspannung:	+24 V± 10% an PIN 1−4, GND an PIN 5+6
Ausgange 1 - 4	Ausgangsstrom: potentialfrei zu Prüfspo	max. 250 mA je Ausgang / max. 2 A insgesamt unnung und interner Versorgung, kurzschlussfest

Merkmale

- Multifunktionaler Sicherheitsanalysator für die Sicherheitsprüfung nach den gängigen nationalen und internationalen Normen (IEC, EN, UL, VDE, etc.)
- 19" Einschub mit integriertem LC Touch Panel
- 10.1" TFT Farbdisplay 1024x600 pixels
- Bedienung mit kapazitivem Touchscreen
- USB 2.0 Schnittstelle
- Ethernet 10/100/1000 MBit
- 1 GHz 32bit Dual-Core CPU + GPU mit 512 MByte RAM
- 1 GB interner Speicher (optional bis 64 GB)

* Änderungen vorbehalten durch Produkt-Weiterentwicklung

2.3 Aufbau des Gerätes

2.3.1 Frontseite

S 6600H & S 6700H:

- 1 Drucktaster TEST zum Starten einer Prüfung
- 2 LC Touch Display
- 3 Schukosteckdose zum Anschluss des Prüflings
- 4 Anschlussbuchse PROBE für Schutzleiterprüfstift
- 5 Anschlussfeld mit Laborbuchsen (Anschluss HIGH VOLTAGE nur bei S 6600U, nicht bei S6700U)

S 6600U & S6700U:

2.3.2 Rückseite

Hinweis:

Die jeweils vorhandenen Anschlüsse unterscheiden sich zwischen den Gerätevarianten. Je nach Variante sind nur bestimmte Anschlüsse vorhanden.

- 1 Kaltgerätesteckdose für Netzkabel (POWER), mit Sicherung (2A, träge), und Ein/Aus-Schalter des Gerätes
- 2 Spannungseinspeisung für Funktionstest (EXT SUPPLY) nur S6700, nicht S6600
- 3 Sicherung FC1 (16A träge), Absicherung der ext. Einspeisung nur S6700, nicht S6600
- 4 Anschlussbuchse für externen Schutzkreis (EXT.SK)
- 5 Lüftungsgitter unbedingt freihalten!
- 6 Anschlussfeld für den Prüflingsanschluss:

RETURN	- (peb)	– nur "H" Geräte
CURRENT	- (pea) (HV⁻)	– nur "H" Geräte
SENSE+	- (pea')	– nur "H" Geräte
SENSE-	- (peb')	– nur "H" Geräte
L, N	- Anschluss Phase	& Neutralleiter – nur S6700U

- 7 USB Anschluss (USB)
- 8 LAN Anschluss: für Ethernet-Verbindung (ETHERNET)
- 9 Digital-I/O Schnittstelle (SIGNAL IO)

3 Inbetriebnahme

3.1 Voraussetzungen

Das Prüfgerät *S* 6600 / *S* 6700 sowie alle elektrischen Anschlüsse und Leitungen müssen in funktionsfähigem und betriebssicherem Zustand sein.

Die Allgemeinen Sicherheitsvorschriften (siehe Kapitel 1.3) und die allgemeingültigen gesetzlichen Regeln sowie die sonstigen verbindlichen Richtlinien zur Arbeitssicherheit, zur Unfallverhütung und zum Umweltschutz müssen eingehalten und an Personen, die sich im Arbeitsbereich aufhalten, weitergegeben werden.

Bei nicht sachgerechtem Umgang mit elektrischen Einrichtungen besteht Lebensgefahr durch elektrischen Strom oder Spannung!

Wenn mit dem Sicherheitstester S6700H / S6700U ein Funktionstest oder Ableitstromtest durchgeführt wird, muss die extern einzuspeisende Funktionsspannung über einen externen FI-Schutzschalter abgesichert werden!

3.2 Gerät anschließen

- 1. Netzkabel des Prüfgerätes in Kaltgerätesteckdose (POWER) auf der Geräterückseite einstecken
- 2. Netzkabel an die Stromversorgung anschließen
- 3. Wenn vorgesehen, externe Geräte an Schnittstellen anschließen.
- 4. Sofern der externe Hardware-Schutzkreis (Buchse EXT.SK) nicht aktiv genutzt wird, muss hier der Brückenstecker angeschlossen werden.

Solange EXT.SK unbeschaltet ist, sind mit dem S 6600 / S 6700 keine Prüfungen möglich! (Weil Hardware-Schutzkreis nicht geschlossen.)

3.3 Gerät einschalten

Das S 6600 / S 6700 wird mit dem Netzschalter auf der Geräterückseite (POWER) eingeschaltet.

Anschließend wird im Prüfgerät das interne Betriebssystem gestartet. Dieser Vorgang dauert ca. 10 sec. Sobald der Startvorgang abgeschlossen ist, meldet sich das Prüfgerät mit dem Startbildschirm.

3.4 Gerät ausschalten

Der Sicherheitstester S 6600 / S 6700 wird mit dem Netzschalter auf der Geräterückseite ausgeschaltet.

Bei Prüfungen mit Hochspannung (IS- und HV-Test) muss der Prüfling angeschlossen bleiben, bis ein Prüfergebnis angezeigt wird. - Der Prüfling wird nach Ablauf der Prüfzeit entladen. Wird das S 6600 / S 6700 vorzeitig abgeschaltet, kann der Prüfling nicht entladen werden!

4 Bedienung

4.1 Erklärung der Bedienelemente

Alle Operationen werden über den Touchscreen des Geräts ausgeführt. Wenn Sie eine Funktionstaste drücken, zwischen Registern wechseln oder ein Element aus einer Liste auswählen möchten, berühren Sie einfach das gewünschte Element mit dem Finger.

Bei der Eingabe von Parameterwerten oder Text wird eine virtuelle QWERTZ- oder numerische Tastatur auf dem Display angezeigt, über die Sie Zahlen und Zeichen eingeben können.

1 номе 8 TEST666 **TEST STARTEN** \mathcal{E} 2 SINGLETEST 7 1 3 X PROGRAM ¢γ 4 CONFIG \checkmark \bigotimes 5 USER ANALYSE ŝ 6 ⊐ BACK INFO ASTERIX | HG66 nicht verfügba 9

4.2 Startbildschirm / Hauptmenü

Nach der Benutzeranmeldung zeigt das Gerät den Startbildschirm mit dem zuletzt verwendeten Programm an. Sie können sofort mit der Prüfung beginnen, indem Sie das START-Dreieck ▶ in der Mitte drücken.

Um ein anderes Prüfprogramm auszuwählen, drücken Sie links auf das Symbol "PROGRAM". Es wird eine Liste aller im Gerät gespeicherten Prüfprogramme angezeigt, und Sie berühren einfach das Programm, das Sie als nächstes verwenden möchten.

(1)	HOME	- der Startbildschirm, auf dem der Prüfbetrieb stattfindet.
(2)	SINGLE TEST	– Ausführung einzelner Prüfschritte ohne die Notwendigkeit, ein Prüfprogramm zu erstellen.
(3)	PROGRAM	 öffnet den Programmeditor, in dem Pr
(4)	CONFIG	 – öffnet den Optionsdialog, in dem allgemeine Systemeinstellungen vorgenommen werden können.
(5)	USER	- öffnet die Benutzerverwaltung, in der Benutzer und Passwörter verwaltet werden.
(6)	INFO	 zeigt den Info-Bildschirm mit grundlegenden Informationen über das Gerät.
(7)	(Test wheel)	 zeigt den aktuellen Status und Fortschritt einer laufenden Pr
(8)	(result bars)	- sie zeigen den Status/die Ergebnisse der zuvor durchgeführten Prüfungen an.
(9)	BACK	 Geht vom aktuellen Untermenü zur ück zum vorherigen Men ü oder zur ück zum HOME- Bildschirm.

4.3 Wechsel des Prüfprogrammes

Um zu einem anderen Prüfprogramm zu wechseln, tippen Sie auf den Punkt "PROGRAM" auf der linken Seite. Daraufhin wird die Liste der Prüfprogramme angezeigt:

Wählen Sie aus der Programmliste das Testprogramm aus, das Sie als nächstes verwenden möchten, und tippen Sie dann auf die Schaltfläche "TEST". Das Testprogramm wird aktiv geladen, und Sie kehren automatisch zum Bildschirm "HOME" zurück, um mit den Prüfungen zu beginnen.

Durchführen von Prüfungen 5

Übersicht 5.1

Prüfling anschließen

Bei Benutzung eines Anschlusspultes (z.B. "A3") wird einfach der Netzstecker des Prüflings in die Steckdose am Pult eingesteckt. Alle elektrischen Prüfungen werden nun über den Netzanschluss des Prüflings durchgeführt. Wenn es die anzuwendende Prüfnorm erfordert, bzw. wenn Teile des Prüflings geprüft werden sollen, die nicht über den Netzanschluss erreichbar sind, kann der Prüfling auch manuell kontaktiert werden. Hierfür befinden sich auf der Rückseite des Prüfgerätes Anschlüsse mit allen erforderlichen elektrischen Ausgängen für den Anschluss der Prüflinge.

• Laden des Prüfprogrammes

Nach dem Laden eines Testprogramms (siehe vorherige Seite) wird das Programm auf dem Startbildschirm angezeigt:

Starten der Prüfung

Um das Testprogramm zu starten, tippen Sie auf das das START-Dreieck ▶ in der Mitte des Testrads.

Prüfschritt-Ablauf

Die Prüfschritte des Programmes laufen nacheinander mit ihren programmierten Parametern ab. Abhängig von Prüfschritt und eingestellter Startkontrolle starten die einzelnen Schritte entweder automatisch, oder bei Kontaktierung des Prüflings, oder nach Betätigung der Startkontrolle. Während ein Prüfschritt läuft, werden die aktuellen Messwerte auf dem Display angezeigt (s. nächste Seite).

Prüfschritt-Ergebnis

Endet ein Prüfschritt mit GUT, startet sofort der nächste Schritt.

Endet ein Prüfschritt mit FEHLER, wird:

- der Prüfablauf angehalten
- der Statusbalken des Tests wird ROT gefärbt und mit einem X markiert

Prüfungs-Gesamtergebnis

Wurden alle Prüfschritte mit GUT gewertet, ist das Gesamtergebnis der Prüfung GUT.

Das Gerät zeigt wieder den Start-Bildschirm, mit dem Statusbalken der letzten Prüfung in GRÜN, und ist bereit für die nächste Prüfung.

Wurde ein Prüfschritt mit FEHLER gewertet, ist das Gesamtergebnis der Prüfung FEHLER.

Das Gerät zeigt wieder den Start-Bildschirm, mit dem Statusbalken der letzten Prüfung in ROT.

Im manuellen Prüfmodus können Sie nun entweder

- mit der START-Taste sofort den nächsten Test starten, oder

- die Messwerte des Testverlaufs überprüfen (siehe Kap. 5.4, S. 21)

5.2 Bildschirmanzeige während eines Prüfschrittes

Während ein Prüfschritt durchgeführt wird, werden alle relevanten Daten auf dem Bildschirm angezeigt:

- erfolgreich beendete Prüfschritte sind im Prüfrad GRÜN markiert
- der Fortschritt des aktuell laufenden Prüfschritts wird in BLAU angezeigt
- unter dem Prüfrad werden die aktuellen Prüfwerte und Messungen angezeigt.

Beispiel Hochspannungsprüfung AC:

Beispiel Isolationsprüfung:

5.3 Anzeige von Prüfungen mit GUT/FEHLER Ergebnis

Wenn ein Testlauf mit dem Ergebnis GUT beendet wurde, oder wenn ein Prüfschritt mit FEHLER endet, wird dieses Ergebnis sofort mit einem grünen bzw. roten Hintergrundzeichen angezeigt.

Beispiel Prüfergebnis GUT:

Beispiel Prüfergebnis FEHLER:

5.4 Einsicht der Prüfergebnisse

Wenn ein Prüfprogramm abgeschlossen wurde und das Gerät wieder den Startbildschirm zeigt, können mit den Status-Balken auf der rechten Seite die detaillierten Werte der letzten Prüfungen eingesehen werden:

6 Erstellen von Prüfprogrammen

6.1 Allgemeines

Durch die Funktionalität der Prüfprogramme des S 6600 / S 6700 lassen sich komplexe Prüfabläufe komfortabel realisieren. Auch die Verwaltung und Organisation verschiedener Programme für unterschiedliche Prüflingstypen ist problemlos möglich.

Die erstellten Prüfprogramme werden intern in einem nicht-flüchtigem Speicher abgelegt und bleiben auch dann erhalten, wenn das Gerät komplett von der Netzversorgung getrennt wird.

6.2 Verwalten von Prüfprogrammen

Um ein neues Prüfprogramm zu erstellen oder bestehende Prüfprogramme zu bearbeiten, wird das Modul "PROGRAM" verwendet. Wenn Sie das Modul aufrufen, sehen Sie die Liste aller Prüfprogramme und eine Schaltfläche "NEU", um ein neues Prüfprogramm zu erstellen:

$\square \bigcirc \square$	NELL		
НОМЕ	NEO	SHOW	
K - A		DOMINIES	
SINGLETEST	TEST001		
	TEST002		
PROGRAM	TEST789		
٩٢٩	TEST666		
CONFIG			
Q			
USER			TEST
ې د			
۲. INFO			С ВАСК
A	STERIX HG66 nicht verfügbar		

Wenn Sie eines der Prüfprogramme auswählen, erscheinen zusätzlichen Optionen, dieses Programm zu BEARBEITEN, das Programm zu LÖSCHEN oder eine KOPIE (Klon) des Programms zu erstellen:

- Neu Mit dieser Option wird ein neues Pr
 üfprogramm erstellt. Zun
 ächst erscheint ein Dialog, in dem ein Name f
 ür das neue Programm eingegeben werden muss. Nach Eingabe & Best
 ätigung des Names k
 önnen Pr
 üfschritte in das Programm eingef
 ügt werden.
 - Hinweis: Die Position von Prüfprogrammen in der Liste kann nicht gewählt werden. Die Programme werden in der Reihenfolge abgelegt, in der sie erstellt wurden.
- Bearbeiten Hierdurch wird das gewählte Prüfprogramm zur Bearbeitung geöffnet. Es können dann Prüfschritte hinzugefügt oder entfernt werden, und die Prüfparameter für die einzelnen Schritte eingestellt werden.
- Löschen Hiermit wird das gewählte Prüfprogramm aus der Liste gelöscht. Vor dem Löschen erfolgt eine Sicherheitsabfrage, um versehentliches Löschen zu vermeiden.
- Kopieren Mit dieser Option wird ein Duplikat des gewählten Programmes erstellt. Nach Anwahl von "Kopieren" muss zunächst ein neuer Name für das duplizierte Programm eingegeben werden:

6.3 Editieren eines Prüfprogrammes

Nach dem Erstellen eines neuen Programmes, oder nach dem Öffnen eines Programmes mit "EDIT", wird das Programm mit allen vorhandenen Prüfschritten angezeigt:

Nach Erstellen eines neuen Programms

HINZUFÜGEN – Mit dieser Option wird ein neuer Prüfschritt in das Programm eingefügt. Bei Betätigung von "HINZUFÜGEN" wird eine Liste mit allen verfügbaren Prüfschritten angezeigt.

Der gewünschte Prüfschritt wird einfach durch Antippen ausgewählt.

Der neue Prüfschritt wird nach dem Schritt eingefügt, der gerade im Programm ausgewählt/markiert ist.

Auswahl beim Einfügen eines neuen Prüfschrittes

- **BEARBEITEN –** Dies öffnet den markierten Prüfschritt, um Änderungen durchzuführen.
- **KOPIEREN** Der gewählte Prüfschritt wird in den internen Zwischenspeicher kopiert.
- LÖSCHEN Der gewählte Prüfschritt wird aus dem Programm gelöscht.

6.3.1 RES: Widerstandsprüfung

Bei der Widerstandsprüfung wird eine Spannung von 8 VDC zwischen den Anschlüssen L und N des Prüflinges angelegt, und aus dem daraufhin fließende Strom der Widerstand ermittelt.

Werden Widerstandswerte zwischen Rmin und Rmax gemessen, hat der Prüfling den Test bestanden.

Bei Widerstandswerten kleiner Rmin oder größer Rmax hat der Prüfling den Test nicht bestanden.

Hiermit kann man z.B. prüfen:

- Ist der Prüfling eingeschaltet? (Widerstand vorhanden, aber ausreichend gering)
- Ist der Prüfling ausgeschaltet? (Widerstand sehr hoch)
- Hat der Prüfling einen internen Kurzschluss? (Widerstand nahezu Null)

Erklärung der Prüfparameter für die Widerstandsprüfung:

Prüfzeit	Vorgabe für die Gesamtdauer der Prüfung	(0.1-99.9 s)	
• R Min	Mindestens erforderlicher Widerstand	(0 mΩ – 1 MΩ)	
• R Max	Höchstens zulässiger Widerstand	(0 mΩ – 1 MΩ)	
Auswerteverz.	Der Parameter "Auswerteverzögerung" gibt an, welche Zeitspanne zu Beginn eine Prüfung <u>nicht</u> auf den Grenzwert R _{min} hin überprüft wird.		
	<u>Beispiel</u> : Wenn "Auswerteverzögerung" auf z.B. 40% eingestellt ist, und ein Widerstandsprüfung mit 10s Prüfdauer durchgeführt wird, erfolgt di Auswertung des Grenzwertes R _{min} erst nach 4 Sekunden.		
	Diese Funktion ist hilfreich, wenn Prüflinge bauartbedingt (z Verhalten) eine gewisse Zeitspanne benötigen, bis sich stabile Mess	z.B. kapazitives swerte einstellen.	
	Generelle Hardwarefehler (z.B. Kurzschlusserkennung) bleiben h und führen weiterhin zur sofortigen Fehlerabschaltung.	iervon unberührt	

Hinweis zum S 6600U:

Das S 6600U hat keine L+N Anschlüsse, sondern nur den HV+ Anschluss.

Bei diesem Gerät wird der Widerstand zwischen den Anschlüssen SENSE⁺ \leftrightarrow SENSE⁻ gemessen.

6.3.2 GB: Schutzleiter-Prüfung (Ground Bond)

Die Schutzleiterprüfung misst den Widerstand zwischen PE (Erdung) und Gehäuse des Prüflings. Der Widerstand muss möglichst klein sein.

Werden Widerstandswerte zwischen Rmin und Rmax gemessen, hat der Prüfling den Test bestanden.

Werden Widerstandswerte <u>kleiner</u> R_{min} oder <u>größer</u> R_{max} gemessen, oder wird der Prüfstrom I nicht erreicht, ist das Prüfergebnis "FEHLER".

Erklärung der Prüfparameter für die Schutzleiterprüfung:

•	(mindestens) erforderlicher Prüfstrom	(1 - 32 A AC)
• F nom	Wählt die Frequenz der AC-Prüfspannung	(50 Hz / 60 Hz)
• Testzeit	Vorgabe für die Gesamtdauer der Prüfung	(0.1-999,0 s)
• R min	Mindestens erforderlicher Widerstand	(0 - 6000 mOhm)
• R max	Höchstens zulässiger Widerstand	(0 - 6000 mOhm)

Safety:

• *	Kein
• 5	Start Taste
• F	PE Probe
• E	Externer Start
• L	oslassen vor Test

6.3.3 HPAC: Hochspannungsprüfung AC

Die Hochspannungsprüfung überprüft die Spannungsfestigkeit zwischen den aufgeschalteten Potentialen. Bei nicht ausreichender oder beschädigter Spannungsfestigkeit des Prüflings kommt es zu einem Spannungsüberschlag.

Erklärung der Prüfparameter für die Hochspannungsprüfung AC:

• U nom	Vorgabewert für die Prüfspannung ("H	(1) Geräte: 1-	00 – 6000 V [AC]) 00 – 3000 V[AC])
• F nom	Setzt die Frequenz der AC-Prüfspannung		(50 Hz / 60 Hz)
Testzeit	Vorgabewert für die Prüfzeit (ohne Rampe)		(0,1-999,9 s)
Aufwärtsrampe	Zeitdauer der Spannungsrampe beim Start der Prüfung		(0,0-999,9 s)
Abwärtsrampe	Zeitdauer der abfallenden Spannungsrampe am Ende der F	rüfung	(0,0-999,9 s)
• U start	Anfangswert der Spannung zu Beginn der Spannungsra	mpe	$(0V - [U_{nom}])$
• I min	Mindestens erforderlicher Strom für GUT Ergebnis	(0,000 –	20,000 mA [AC])
• I max	Höchstens erlaubter Strom für GUT Ergebnis	(0,000 –	20,000 mA [AC])
I Rampe min	Minimal zulässiger Strom während der Spannungsrampe	(0,000 –	20,000 mA [AC])
• I Rampe max	Maximal zulässiger Strom während der Spannungsrampe	(0,000 –	20,000 mA [AC])
I Spitze max	Kurze Stromspitzen bis zu diesem Wert sind zulässig	(0,000 –	30,000 mA [AC])
Start Taste			
Externer Start			
Loslassen vor Test			
Halten während Test			

6.3.4 HPDC: Hochspannungsprüfung DC

Die Hochspannungsprüfung überprüft die Spannungsfestigkeit zwischen den aufgeschalteten Potentialen. Bei nicht ausreichender oder beschädigter Spannungsfestigkeit des Prüflings kommt es zu einem Spannungsüberschlag.

Erklärung der Prüfparameter für die Hochspannungsprüfung DC:

• U nom	Vorgabewert für die Prüfspannung ("H"-	(100 – 6000 V [DC]) Geräte: 100 – 3000 V [DC])
Testzeit	Vorgabewert für die Prüfzeit (ohne Rampe)	(0,1-999,9 s)
Aufwärtsrampe	Zeitdauer der Spannungsrampe beim Start der Prüfung	(0,0-999,9 s)
Abwärtsrampe	Zeitdauer der abfallenden Spannungsrampe am Ende der P	rüfung (0,0 – 999,9 s)
• U start	Anfangswert der Spannung zu Beginn der Spannungsrar	npe $(0V - [U_{nom}])$
• I min	Mindestens erforderlicher Strom für GUT Ergebnis	(0,000 – 20,000 mA [DC])
• I max	Höchstens erlaubter Strom für GUT Ergebnis t	(0,000 – 20,000 mA [DC])
I Rampe min	Minimal zulässiger Strom während der Spannungsrampe	(0,000 – 20,000 mA [DC])
I Rampe max	Maximal zulässiger Strom während der Spannungsrampe	(0,000 – 20,000 mA [DC])
I Spitze max	Kurze Stromspitzen bis zu diesem Wert sind zulässig	(0,000 – 30,000 mA [DC])
Start Taste		
Externer Start		
Loslassen vor Test		
Halten während Test		

6.3.5 IR: Isolationswiderstands-Prüfung

Mit der Isolationsprüfung wird der Isolationswiderstand zwischen den aufgeschalteten Potentialen ermittelt. Bei nicht ausreichender oder beschädigter Spannungsfestigkeit des Prüflings kommt es zu einem Spannungsüberschlag.

Erklärung der Prüfparameter für die Isolationsprüfung:

• U nom	Vorgabewert für die Prüfspannung ("H"-	(100 – 6000 V [DC]) Geräte: 100 – 3000 V [DC])
Testzeit	Vorgabewert für die Prüfzeit (ohne Rampe)	(0,1-999,9 s)
Aufwärtsrampe	Zeitdauer der Spannungsrampe beim Start der Prüfung	(0,0-999,9 s)
Abwärtsrampe	Zeitdauer der abfallenden Spannungsrampe am Ende der Prü	fung (0,0 – 999,9 s)
• U start	Anfangswert der Spannung zu Beginn der Spannungsram	pe (0V – [U _{nom}])
• R min	Mindestens erforderlicher Widerstand für GUT-Ergebnis	(100 kΩ – 10 GΩ)
I Rampe min	Minimal zulässiger Strom während der Spannungsrampe	(0,000 – 20,000 mA [DC])
• I Rampe max	Maximal zulässiger Strom während der Spannungsrampe	(0,000 – 20,000 mA [DC])
• I Spitze max	Kurze Stromspitzen bis zu diesem Wert sind zulässig	(0,000 – 30,000 mA [DC])
• Auswerteverz.	Der Parameter "Auswerteverzögerung" gibt an, welche Z Isolationsprüfung <u>nicht</u> auf den Grenzwert R _{min} hin überprüf <u>Beispiel</u> : Wenn "Auswerteverzögerung" auf z. B. 40% Isolationsprüfung mit 10s Prüfdauer durchgefü	Zeitspanne zu Beginn einer ft wird. eingestellt ist, und eine hrt wird, erfolgt die Aus-
	wertung des Grenzwertes R _{min} erst nach 4 Sekund	den.
	Diese Funktion ist hilfreich, wenn Prüflinge bauartbedingt eine gewisse Zeitspanne benötigen, bis sich stabile Messwert	(z.B. kapazitives Verhalten) e einstellen.
	Generelle Hardwarefehler (z. B. Kurzschlusserkennung) ble führen weiterhin zur sofortigen Fehlerabschaltung	eiben hiervon unberührt und

6.3.6 LC: Ableitstrom-Prüfung

Die Ableitstromprüfung stellt den Strom fest, der im Falle des Fehlens eines Schutzleiteranschlusses, oder einer Beschädigung desselben, über das Gehäuse des defekten Prüflinges zur Erde abfliessen kann.

Erklärung der Prüfparameter für die Ableitstromprüfung:

• I min	Minimal erforderlicher Prüfstrom für GUT-Ergebnis	(0,0 – 10,0 mA)
• I max	Maximal zulässiger Prüfstrom für GUT-Ergebnis	(0,0 – 10,0 mA)
• F nom	Setzt die Frequenz der AC-Prüfspannung	(50 Hz / 60 Hz)
Prüfzeit	Vorgabe für die Prüfdauer	(0,1-999,9 s)
• U nom	Vorgabewert für die Prüfspannung	(100 – 270 V)

6.3.7 FP: Funktions-Leistungs-Prüfung

Die Funktionsprüfung ist eine Stromaufnahmemessung bei vorgegebener Nennspannung. Es wird eine Wechselspannung von 120 oder 230 VAC zwischen Phase und N-Leiter des Prüflings angelegt, und verschiedene resultierende elektrische Werte werden gemessen. Der Messbereich liegt zwischen 0 und 16 A.

Die nötige AC/DC-Prüfspannung muss von extern über die Buchse EXT.SUPPLY eingespeist werden.

Erklärung der Prüfparameter für die Funktionsprüfung:

Prüfzeit	Maximale Laufzeit für den Funktionstest.	(0,1-1000,0 s)
• Gutzeit	Wenn alle Messwerte für die Zeitdauer von [Gutzeit] durch- gehend innerhalb der Grenzwerte liegen, wird die Prüfung bereits vor Ablauf von [Prüfzeit] beendet.	(0,0 – 1000,0 s)
 Volle Testzeit ausführen 	Die Bedingung [Gutzeit] ist gültig für ein GUT-Prüfergebnis, abe trotzdem bis zum Ende von [Prüfzeit] durch.	r die Prüfung läuft

Register "Limits":

In dieser Registerkarte wird festgelegt, welche elektrischen Werte tatsächlich gemessen werden. Durch Aktivieren des Kontrollkästchens eines Elements wird dieser Wert gemessen und die gemessenen Werte werden in das Prüfergebnisprotokoll aufgenommen.

Während des Tests können bis zu drei Werte auf dem Bildschirm des Geräts angezeigt werden. Die anzuzeigenden Werte werden mit den Radiobuttons auf der rechten Seite ausgewählt.

6.3.8 TXT: Text-Schritt

Mit diesem Schritt können dem Prüfer Hinweise angezeigt werden, oder Fragen, die mit Ja/Nein zu beantworten sind.

Im Fall von Ja/Nein-Fragen kann entschieden werden wie die Antwort auszuwerten ist:

Always continue: der Prüfablauf wird fortgesetzt (Frage & Antwort erscheinen aber im Prüfprotokoll) Yes continue: Bei Antwort JA wird der Prüfablauf fortgesetzt, bei NEIN wird mit Fehler abgebrochen No continue: Bei Antwort NEIN wird der Prüfablauf fortgesetzt, bei JA wird mit Fehler abgebrochen

7 Weitere Funktionen und Einstellungen

7.1 Einzeltest

Der Einzeltest-Betrieb eignet sich, um einzelne Prüfungen mit wechselnden Prüfparametern schnell und einfach nacheinander auszuführen. Um etwa für einen neuen Prüflingstyp die geeigneten Prüfparameter zur Erstellung eines Prüfprogrammes zu finden, empfiehlt sich der Einzelschrittbetrieb.

Eine andere Möglichkeit wären z. B. Sonderprüfungen, oder Prüfungen zur Fehlersuche, für einzelne Prüflinge – die Erstellung eines Programmes eigens für diese Zwecke wäre zu aufwändig.

Wenn man zum Register "Einzeltest" wechselt, kann direkt der gwünschte Test ausgewählt werden:

Hier können dann die wichtigsten Test-Parameter gesetzt werden, und dann mit "Starten & Halten" gestartet werden:

Beachten Sie, dass der Einzeltest nur die Messung von Werten durchführt und diese auf dem Bildschirm anzeigt. Es gibt kein Testergebnis "GUT" oder "FEHLER", und die gemessenen Werte werden nicht aufgezeichnet.

7.2 Benutzerverwaltung

Im Register "Benutzer" können individuelle Benutzerkonten angelegt werden. Für jeden Benutzer können individuelle "Rechte" vergeben werden, die festlegen, welche Funktionen des Geräts für diesen Benutzer verfügbar sind.

HOME		\sim		NEU
		ASTERIX		BEARBEITEN
SINGLETEST		OBELIX)	LÖSCHEN
		IDEFIX)	LOGOUT
PROGRAM				
	ļ			
USER		\sim		
ິ INF0		LOGIN		<☐ ВАСК
	ASTERIX HG66 nicht verfi	iqbar		

Liste der Benutzer

	ASTERIX - ASTERIX	
HOME	✓ Programm auswählen	PASSWORT SET.
E Z	✓ Programm bearbeiten	
SINGLETEST	Singletest durchführen	
	Netzwerkkonfiguration	
	Remote-Modus Konfiguration	
FRUGRAM	Anzeigekonfiguration	
444	✓ Nutzerkonfiguration	
CONFIG	✓ Daten herunterladen	
	▼ Daten hochladen	
USER	Vutzer für den Remote-Modus	
0		UKAY
Л		ВАСК

Liste der Berechtigungen eines Benutzers

Hinweise:

- jeder Benutzer kann ein individuelles Passwort festlegen, um sein Konto zu schützen, aber es ist auch erlaubt, das Passwort leer zu lassen.
- wenn das Benutzerverwaltungssystem verwendet wird, muss es mindestens einen Benutzer mit dem Recht "Nutzerkonfiguration" geben.
- Wenn die Benutzerverwaltung nicht benötigt wird (z.B. im Labor), kann sie im Register CONFIG→USERS komplett abgeschaltet werden. In diesem Fall sind alle Gerätefunktionen für jeden Benutzer zugänglich.

Anhang

A Schnittstellenbelegung

A-1 Externe I/O Schnittstelle "SIGNAL IO"

PIN	description	configuration
1	Ausgang 1	OUT1
2	Ausgang 2	OUT2
3	Ausgang 3	OUT3
4	Ausgang 4	OUT4
5	GND	Masse
6	GND	Masse
7	Eingang 1	IN1
8	Eingang 2	IN2
9	Eingang 3	IN3
10	Eingang 4	IN4
11	+24 V DC *)	int. Spannung gegen Masse *)
12	+24 V DC *)	int. Spannung gegen Masse *)
13	n.a.	nicht belegt
14	n.a.	nicht belegt
15	n.a.	nicht belegt

*) Intern generiert, **nicht!** extern einspeisen!

A-2 Anschlüsse für Prüfspannungen

Für S 6600U:

Für S 6600H, S 6700U/H:

A-3 Probe Anschluss PROBE

Diese Buchse dient zum Anschließen eines Schutzleiter-Prüfstiftes. Die Anschlüsse peb und peb' sind parallel zu den Anschlüssen CURRENT/SENSE+ im Anschlussfeld geschaltet.

Zu Beachten:

Bei der 4-Leiter-Messung der Schutzleiterprüfung werden die Punkte peb und peb' am Prüfling zusammengeführt, bei Verwendung eines Prüfstiftes werden sie im Prüfstift (in der Spitze) zusammengeführt. Deswegen dürfen die Punkte peb und peb' nicht mehrfach (durch einen Prüfstift) belegt werden:

- Wenn die Anschlusspunkte peb/peb' manuell genutzt werden (über die Laborbuchsen CURRENT/SENSE+ im Anschlussfeld), dann darf kein Prüfstift am Prüfgerät oder am Anschlusspult angeschlossen sein!
- Es dürfen keine zwei Prüfstifte gleichzeitig am Anschlusspult und am Prüfgerät angeschlossen sein!

A-4 Anschluss für externe Funktionsspannung EXT.SUPPLY

Über diesen Anschluss wird die externe Funktionsspannung eingespeist, mit der der Prüfling während der Funktionsprüfungen (FP) und Ableitstromprüfung (LC) versorgt wird.

Die Funktionsspannung ist über eine 16A Sicherung abgesichert ("FC1" auf Geräterückseite).

A-5 Anschluss für externes Schutzkreis-Signal EXT.SK

4-polige M8-Buchse mit Innengewinde

Um den Schutzkreis zu schließen, müssen die PINs 1↔2 gebrückt werden. PINs 3 und 4 sind nicht belegt.

Wenn keine externe Schutzkreis-Anwendung vorgesehen ist, muss der mitgelieferte Brückenstecker angeschlossen werden. Solange diese Schnittstelle unbeschaltet ist, ist kein Prüfbetrieb möglich.

B USB-Geräte, und "Prüfungen mit Hochspannung"

- Bei Prüfungen mit Hochspannung können für kurze Zeitspannen hochfrequente Störfrequenzen entstehen, falls der aktuelle Prüfling fehlherhaft ist. (Weil die Prüfspannung an der Schwachstelle des Prüflings "durchschlägt" oder "überspringt".) Das hierbei für Sekundenbruchteile entstehende "Sprühen" kann dann hochfrequente Störfrequenzen verursachen, die nach dem "Antennen-Prinzip" von den Prüfleitungen abgestrahlt, und von in der Nähe befindlichen USB-Leitungen wieder empfangen werden.
- USB-Controller sind generell empfindlich gegen einstreuende Hochfrequenzen, daher kann in diesem Fall die Kommunikation mit USB-Geräten gestört werden. D.h. der USB-Controller kann hierdurch in solcher Art gestört werden, dass er weiterhin in einem nichtfunktionalen Zustand verbleibt.
- Sollte ein USB-Gerät nach Auftreten eines Hochspannungsfehlers Funktionsstörungen zeigen, ist es u.U. bereits ausreichend, das USB-Kabel kurz aus-, und nach wenigen Sekunden wieder einzustecken. Sollte die USB-Verbindung weiterhin gestört sein, ist es erforderlich, das bzw. die betroffenen Geräte aus- und wieder ein zu schalten.

Betroffene Situationen und Geräte:

- grundsätzlich jeder PC oder vergleichbares Gerät, das eine USB-Verbindung benutzt, und sich in unmittelbarer Nähe zu einer Prüfung mit Hochspannung befindet.
- insbesondere solche PCs, die per Software DAT3800 oder DAT3805 ein Prüfgerät steuern, und über USB mit dem Prüfgerät verbunden sind.
- ebenfalls Prüfgeräte der Serie 3800 oder 1800 die eigenständig USB-Geräte benutzen, z.B. USB-Tastatur, USB-Stick zum Datenaustausch, usw.

Maßnahmen, um Störungen zu vermeiden:

- Soweit möglich, sollte ein möglichst großer Abstand zwischen USB-Geräten / USB-Kabeln einerseits, und Prüfling bzw. Prüfleitungen andererseits, eingehalten werden. (Empfohlen mindestens 30 cm, es gilt "je mehr desto besser")
- Die Verwendung von gut geschirmten USB-Kabeln mit Ferritkern-Drossel ist empfohlen.
 (Dies allein kann die Möglichkeit von USB-Fehlern nicht unbedingt verhindern, aber es kann die Wahrscheinlichkeit des Auftretens eines Fehlers weiter verringern.)

EU-Konformitätserklärung EU Declaration of Conformity

Wir / we :

SPS electronic GmbH The Electrical Safety Test Company Eugen-Bolz-Str. 8 D-74523 Schwäbisch Hall

erklären hiermit, dass das nachfolgend genannte Gerät den einschlägigen grundlegenden Sicherheitsforderungen der EU-Richtlinien entspricht.

declare, that the following unit complies with all essential safety requirements of the EU Directives.

Geräteart:	Sicherheitstester
Description of device:	Safety Tester

Typ / Type : S6600H, S6700H, S6600U, S6700U

EU Richtlinien / EU Directives:

	EG Maschinenrichtlinie 2006/42/EG mit Änderungen EC Directive for machinery 2006/42/EC with amendments
×	EU Niederspannungsrichtlinie 2014/35/EU EU Directive for low voltage 2014/35/EU
\times	EU Richtlinie Elektromagnetische Verträglichkeit 2014/30/EU mit Änderunger EU Directive electromagnetic compatibility 2014/30/EU with amendments
×	RoHS-Richtlinie 2011/65/EU RoHS Directive 2011/65/EU

Angewandte harmonisierte Normen: *Applicable harmonized standards:*

• EN 61 000-3-2; EN 61 000-3-3; EN 61 326:2013-07; EN 50 191:2011-10

Angewandte nationale Normen und technische Spezifikationen: Applicable national standards and technical specifications:

11.07.2024 Datum / date:

Dipl. Ing. Johannes Geyer

Dieser Konformitätserklärung unterliegt grundsätzlich nur das von uns gelieferte oder in Betrieb genommene Gerät. Für Änderungen und Erweiterungen ist der Betreiber verantwortlich und damit für die Sicherstellung der Übereinstimmung der veränderten Anlage mit der betreffenden EU-Richtlinie.

Subject to this declaration of conformity is the device as supplied or placed into operation by us. The operator is responsible for subsequent alterations and extensions, and therefore has to ensure the altered unit complies with the corresponding EU directives.