
Custom OFDM Modulation Analysis 89600 VSA Software

Option 89601BHFC

- See through the complexity of custom OFDM systems
- Highly customizable parameter setup supports a broad range of modulation schemes, including OFDM/OFDMA, F-OFDM and FBMC, as well as multiple access schemes like DFT-S-OFDM and SCMA/NOMA
- FDD/TDD modes, up to 65,539 subcarriers
- Modulation formats from BPSK to 16384QAM
- Evaluate SISO and MIMO systems with channel, stream, and cross-channel measurements
- Use throughout the entire life cycle: from simulation and development to design verification and test
- Overall EVM, EVM across symbols and subcarriers, EVM per MIMO stream, constellation, burst summary, 3D Power, and more
- Flexible measurement displays with color coding and marker coupling features to characterize signals and troubleshoot errors

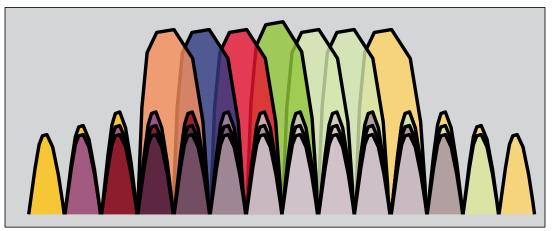
Ihr Ansprechpartner / Your Partner:

dataTec AG E-Mail: info@datatec.eu >>> www.datatec.eu

Mess- und Prüftechnik. Die Experten.

Table of Contents

Custom OFDM Modulation Analysis	3
Analysis and Troubleshooting	6
Software Features	13
Key Specifications	17
Ordering Information	18
Additional Resources	19


Custom OFDM Modulation Analysis

With Keysight's advanced OFDM measurement tools, you can analyze custom OFDM formats, including FDD, TDD, MIMO and multi-user systems. Take advantage of Option 89601BHFC's highly customizable parameter setup, which includes auto-detection of modulation type and the ability to assign users to symbols and subcarrier allocations. Its analysis capabilities allow for time- and frequency-selective measurements over some or all carriers or symbols, and you can perform channel, cross-channel, and per-stream measurements with error analysis on MIMO systems.

Custom OFDM is just one of over 75 signal standards and modulation types supported by the 89600 VSA software. This comprehensive set of tools for demodulation and vector signal analysis enables you to explore virtually every facet of a signal and optimize your most advanced designs. As you assess the tradeoffs, the 89600 VSA helps you see through the complexity.

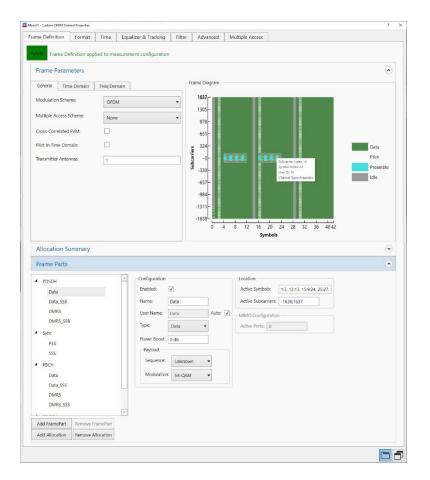
Custom OFDM technology overview

Multi-carrier modulation schemes, such as OFDM, represent significant challenges for those seeking to verify PHY-layer characteristics. Most OFDM signals are designed to an open commercial standard, and so are the tools that test them. While traditional spectrum analysis can measure simpler parameters such as frequency, power level, and spectral mask, the more in-depth quality measures such as error vector magnitude, carrier feedthrough, I-Q match, burst parameters, etc. require special capabilities found only with vector signal analysis tools flexible enough to work with custom OFDM systems.

Figure 1. OFDM is a multi-carrier scheme where closely spaced carriers overlap. Nulls in each carrier's spectrum land at the center of all other carriers for zero inter-carrier interference

OFDM uses a multicarrier scheme to achieve occupied spectrum efficiencies (data rate per Hz of bandwidth) better than traditional, single-carrier schemes (QPSK, QAM, etc.), and with better immunity to common channel impairments.

OFDM is tolerant of multipath; spectral dropouts only affect a limited number of carriers, and the OFDM signal structure lends itself to strong equalization schemes, which can further reduce the effects of multipath. It can be made even more tolerant to multipath with the addition of more channels and MIMO signal processing techniques. Multi-carrier signals such as OFDM offer useful benefits for many digital communications applications, but with a tradeoff in



signal and design complexity. OFDM signals are subject to the same sorts of design problems as any vectormodulated signal, but these can be difficult to uncover and troubleshoot without OFDM-specific signal analysis tools.

Easy setup

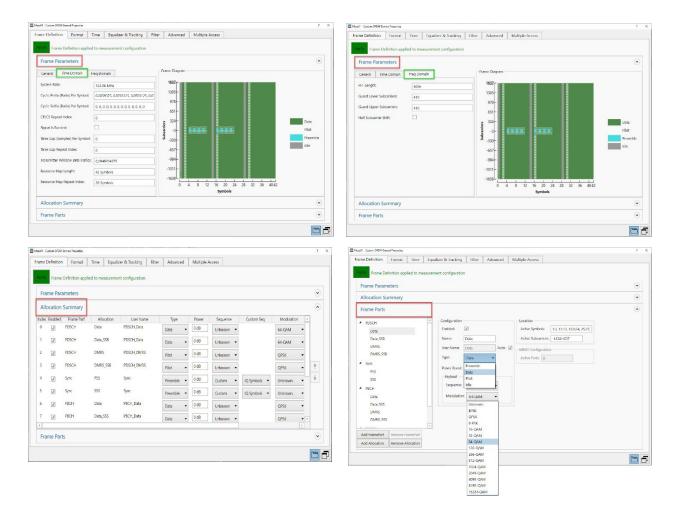
The Custom OFDM demodulator offers user-configurable options for analyzing proprietary OFDM signals, including the early stages of emerging standards like 6G. Although it operates independently of specific standards, it includes presets for standards such WLAN and DVB-T/H.

To set up a custom OFDM measurement, the new Frame Definition properties simplify configuration and enhance usability. A frame can contain multiple flexible elements, referred to as allocations, which can be designated as Preamble, Pilot, Data, or Idle periods. Each allocation allows for a customizable payload, either using a PN sequence or a custom sequence, and the modulation type can be defined for each.

Figure 2. The comprehensive Frame Definition tab is used to configure and manage all settings, including both time and frequency domains. It also assembles frame parts and resource allocations necessary for demodulating and analyzing custom signals. The Frame Diagram provides a color-coded visual representation of the resource allocation within the frame. Hovering over the diagram displays a tooltip with Subcarrier Index, Symbol Index, User ID and Channel Type information at the cursor location.

In the legacy method of configuring custom OFDM, text-based configuration files are used to set up the resource map and resource modulation. These files provide detailed descriptions of each subcarrier in every symbol and specify the modulation type for each subcarrier. The modulation type can also be auto detected for blocks of similarly formatted subcarriers. Additionally, the I-Q files for preamble and pilot can be loaded as text files.

FI	rame Definition Format Ti		Advanced	Multiple Access			
	Load Reference Data IQ Values	Load Reference Pilot IQ Value:	s	Load Reference Pre	eamble IQ Values	Load Resource Allo	ocations
	Load Resource Map	Load Resource Modulation		Preset to S	Standard		
F	Frame Parameters						
>	General		Frame Dia	igram			
1	Time Domain		163Z				
	System Rate	122.88 MHz					
	Cyclic Prefix (Ratio) Per Symbol	0.0859375, 0.0703125, 0.0703125, 0.070	1305				
	Cyclic Suffix (Ratio) Per Symbol	0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0	978				
	CP/CS Repeat Index	0 Symbols	651				
	Signal is Bursted		051				
	Time Gap (Samples) Per Symbol	0	¥ 324-				Data
	Time Gap Repeat Index	0 Symbols	-324 -3-				Pilot
	Transmitter Window Beta (Ratio)	0.0040234375	Subo				Preamble
4	Frequency Domain		° -330				Idle
	FFT Length	4096	-657-				Idle
	Guard Lower Subcarriers	410 Subcarriers	- 984				
	Guard Upper Subcarriers	410 Subcarriers					
	Half Subcarrier Shift		-1311-				
			-1638				
				0 4 8 12	16 20 24 28 3	2 36 40 42	
					Symbols		
	Allocations & Frame Parts						(.
1	Riocations & Flame Faits						


Figure 3. In the legacy method of configuring custom OFDM, the Format tab requires users to load multiple files for resource allocations, resource map, modulation formats, IQ values for the preamble and pilot, and more.

Analysis and Troubleshooting

Maximum format parameter control

In OFDM systems with hundreds or thousands of subcarriers, with preambles, pilots and payload data, there can be a large number of parameters to enter. However, the 89600 VSA simplifies this process with its highly flexible and easy to use user interface. In addition, the VSA supports up to 65K FFT length, allowing for arbitrary guard intervals and an asymmetric number of upper and lower guard subcarriers. For each allocation – whether data, pilot, or preamble - users can define subcarrier and symbol positions, select modulation formats ranging from simple BPSK to complex 16384QAM, and specify the payload sequence.

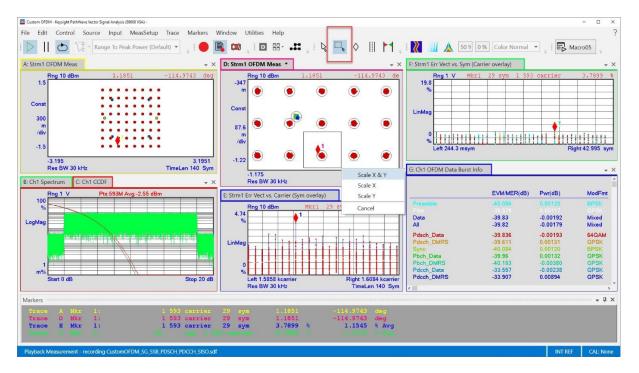


Figure 4. The Frame Definition tab in the Custom OFDM Properties Dialog Box is a single interface to configure all aspects of the input signal for successful demodulation. It allows you to set the frame's general settings, including time and frequency, and manage user allocations to define symbol and subcarrier locations, payload sequence and modulation formats.

Unparalleled measurement flexibility

Troubleshoot signals using a wide range of error analysis tools and measurement displays to characterize your signal. Track down error sources using error tools provided by the 89600 VSA software: EVM by subcarriers or symbols, summary data with EVM, frequency and IQ errors by input channel, or burst info by signal type. Statistical analysis tools such as CCDF can help you determine component specifications.

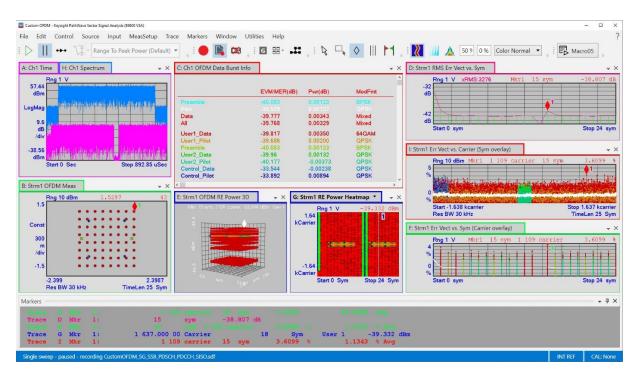


Figure 5. Look at the IQ constellation and use the expand tool on the software toolbar. Do the same on the error vector time trace to focus analysis on symbols of interest, or error vector spectrum trace to focus on a range of carriers. Coupled markers are useful to track symbol by symbol in multiple traces

Insightful views

Traces are color-coded by modulation format or user ID for easy interpretation. Use as many traces and markers as you need to gain exceptional clarity in viewing your signal. Traces such as 3D and 2D power traces are particularly useful for evaluating power over symbols and subcarriers.

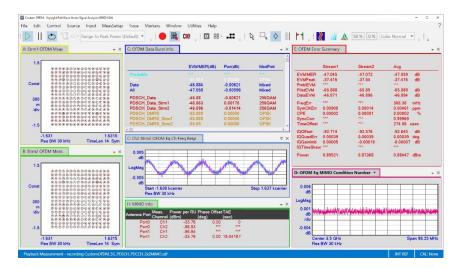


Figure 6. Easily view error performance by user with color-coding. Error vector traces in the spectrum, time, IQ constellation, and OFDM Data Burst Info are color-coded, making it simple to interpret and analyze errors.

Perform MIMO analysis using supported multi-channel hardware

Configure the 89600 VSA software to analyze OFDM systems with up to 8x8 MIMO configurations. Various traces are available to provide insights into modulation quality, power, time alignment error (TAE) and phase offsets for each stream. The MIMO Info table (Figure 6, Trace H) presents both per channel and cross channel performance metrics, while the Burst Info table (Figure 6, Trace G) reports composite EVM and EVM for each stream. Additional traces, including the MIMO condition number and channel frequency response, enables a thorough analysis of these complex systems. For a list of supported multi-channel platforms, visit www.keysight.com/find/89600_hardware

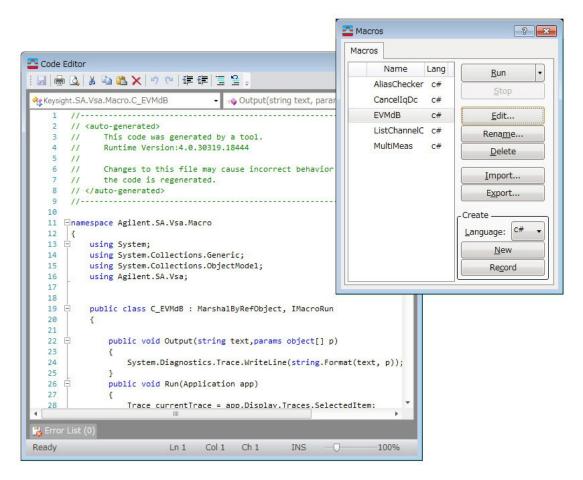
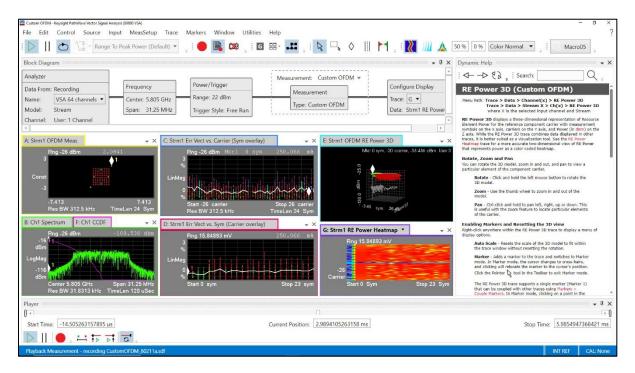


Figure 7. Benefit from the wide range of trace data available to thoroughly characterize and troubleshoot multichannel MIMO systems

Use the same tool to analyze signals throughout development life-cycle

The 89600 VSA software allows you to dynamically input data from either Keysight EEsof ADS or Keysight SystemVue during early development. Hardware connectivity, part of 89601200C, lets you obtain data from hardware using logic analyzers, oscilloscopes, signal analyzers, and modular instruments for multi-domain and cross-domain measurements during prototype development. Finally, use the remote programming capability to develop test programs for design verification and production test. All engineers use the same GUI with consistent setup and measurements, from the beginning to the end of product development.

Figure 8. Develop test programs using familiar SCPI programming or any supported .NET programming language. For simpler tasks, automate a series of manual steps into a single command with macros



Capture and re-analyze important signals

The 89600 VSA software includes signal record and playback capabilities. Use it to capture burst and transient signals for analysis. Take advantage of tools like overlap processing for detailed "slow motion" analysis.

The Block Diagram window provides a left-to-right flowing visual representation of the VSA measurement setup. Each block corresponds to a set of related parameters in the Menu Bar. You can click any block to open a dialog that contains the full set of related parameters (also accessible from the Menu Bar).

Dynamic Help allows you to access the help text and learn about the Custom OFDM format and its features. By detaching the Dynamic Help window and positioning it to the side of the screen, as shown in Figure 9, you can easily view it as it tracks your menu selections. You can also lock it to keep important Help topics readily available.

Figure 9. Dynamic Help explains useful information to explain measurements and other important Custom OFDM and 89600 VSA software operations with over 4000 pages of useful information.

Enhanced EVM analysis with ccEVM and IQ-NC

Emerging technologies with wide bandwidth and high modulation format make EVM measurement performance more challenging, in particular when the transmitted signal power is low. Noise cancellation can reduce noise contributed by the signal analysis hardware, ensuring the measured EVM value mainly reflects the noise from the device under test (DUT). The 89600 VSA, with the 89601EVMC option, offers two noise cancellation techniques—Cross Correlated EVM (ccEVM) and IQ Noise Correction (IQ-NC)—to improve the EVM floor of the measurement hardware.

In ccEVM, multiple time synchronous signal analysis hardware (e.g., 2 for SISO, 4 for 2x2 MIMO) simultaneously capture and demodulate the same signal. By cross correlating the error vectors, uncorrelated noise introduced by the hardware is canceled out, resulting in a much lower EVM. This allows the ccEVM value to primarily reflect noise from the DUT, or from both the signal source and DUT in the case of an amplifier test.

In IQ-NC, a single receiver is used to compensate the acquired signal such that the measured EVM excludes noise contributions from the analysis hardware. This is achieved by acquiring multiple repetitions of the same signal, using averaging to separate the noise from the signal, scaling the noise, and then recombining. In VSA2025, IQ-NC is in BETA support.

	Reysignt Pathwave ved	tor Signal Analysis (89600 VSA) -				- C	
le Edit (Control Sou	rce Input Meas	Setup Trace Ma	rkers Window Utilitie	6 Help			
▷ [Range To Peak Pow	er (Default) 🔻	🔴 📑 🛤 👌 🗉		, R .	🛇 💾 . 💦	
: Strm1 OFD	M Meas			👻 X C: Strm1 OFD	M Meas			Ŧ
	a 14 dBm				g 14 dBm			
1.5 Const				1.5 Const			* * * *	
300				300				
300 m				300 m				
/div				/div				
			• • •			• • • •		
-1.5				-1.5				
-2.8 Res	94 s BW 30 kHz		TimeLen	2.8936 -3.1 280 Sym Res	12 3 BW 30 kHz		3. TimeLen 280	112) Sy
Ch1 OFDM	Error Summar	у		→ × D: D1 Ch1 O	FDM Error Sum	nmary 🔻		
				<u>^</u>				
	Stream1	Stream2	Avg		Stream1	Stream2	Avg	
	-48.25	***	-48.25 dB	EVM/MER	Stream1 -52.305		-52.305 dB	
EVMPeak	-48.25 -35.298	***	-48.25 dB -35.298 dB	EVMPeak	-52.305 -38.788		-52.305 dB -38.788 dB	
EVMPeak PmblEVM	-48.25 -35.298 -49.824	***	-48.25 dB -35.298 dB -49.824 dB	EVMPeak PmblEVM			-52.305 dB -38.788 dB -54.319 dB	
EVMPeak PmblEVM PilotEVM	-48.25 -35.298	*** *** ***	-48.25 dB -35.298 dB	EVMPeak	-52.305 -38.788		-52.305 dB -38.788 dB	
VMPeak PmblEVM PilotEVM DataEVM	-48.25 -35.298 -49.824 -48.858 -48.224	*** *** ***	-48.25 dB -35.298 dB -49.824 dB -48.858 dB -48.224 dB	EVMPeak PmblEVM PilotEVM DataEVM	-52.305 -38.788 -54.319 -53.205 -52.269		-52.305 dB -38.788 dB -54.319 dB -53.205 dB -52.269 dB	
EVMPeak PmblEVM PilotEVM DataEVM FreqErr	-48.25 -35.298 -49.824 -48.858 -48.224 6.6534	*** *** *** *** ***	-48.25 dB -35.298 dB -49.824 dB -48.858 dB -48.224 dB 6.6534 Hz	EVMPeak PmblEVM PilotEVM DataEVM FreqErr	-52.305 -38.788 -54.319 -53.205 -52.269 6.6678		-52.305 dB -38.788 dB -54.319 dB -53.205 dB -52.269 dB 6.6678 Hz	
EVMPeak PmblEVM PilotEVM DataEVM FreqErr SymClkErr	-48.25 -35.298 -49.824 -48.858 -48.224 6.6534 0.00197	*** *** *** ***	-48.25 dB -35.298 dB -49.824 dB -48.858 dB -48.224 dB 6.6534 Hz 0.00197 ppm	EVMPeak PmblEVM PilotEVM DataEVM FreqErr SymClkErr	-52.305 -38.788 -54.319 -53.205 -52.269 6.6678 0.00192		-52.305 dB -38.788 dB -54.319 dB -53.205 dB -52.269 dB 6.6678 Hz 0.00192 ppm	
EVMPeak PmblEVM PilotEVM DataEVM FreqErr SymClkErr CPE	-48.25 -35.298 -49.824 -48.858 -48.224 6.6534 0.00197 0.00011	*** *** *** *** ***	-48.25 dB -35.298 dB -49.824 dB -48.858 dB -48.224 dB 6.6534 Hz	EVMPeak PmblEVM PilotEVM DataEVM FreqErr	-52.305 -38.788 -54.319 -53.205 -52.269 6.6678 0.00192 0.00016		-52.305 dB -38.788 dB -54.319 dB -53.205 dB -52.269 dB 6.6678 Hz	
EVMPeak PmblEVM PilotEVM DataEVM FreqErr SymClkErr CPE SyncCorr	-48.25 -35.298 -49.824 -48.858 -48.224 6.6534 0.00197 0.00011 0.99999	*** *** *** *** *** ***	-48.25 dB -35.298 dB -49.824 dB -48.858 dB -48.224 dB 6.6534 Hz 0.00197 ppm 0.00011 %	EVMPeak PmblEVM PilotEVM DataEVM FreqErr SymClkErr	-52.305 -38.788 -54.319 -53.205 -52.269 6.6678 0.00192		-52.305 dB -38.788 dB -54.319 dB -53.205 dB -52.269 dB 6.6678 Hz 0.00192 ppm 0.00016 %	
EVMPeak PmblEVM PilotEVM DataEVM FreqErr SymClkErr CPE SyncCorr FimeOffset	-48.25 -35.298 -49.824 -48.858 -48.224 6.6534 0.00197 0.00011 0.99999 9.0670	***	-48.25 dB -35.298 dB -49.824 dB -48.858 dB -48.258 dB -48.224 dB 6.6534 Hz 0.00197 ppm 0.00011 % 0.99999 9.0670 msec	EVMPeak PmblEVM PilotEVM DataEVM FreqErr SymClKErr CPE SyncCorr TimeOffset	-52.305 -38.788 -54.319 -53.205 -52.269 6.6678 0.00192 0.00016 1.00000 3.0849		-52.305 dB -38.788 dB -54.319 dB -53.205 dB -52.269 dB 6.6678 Hz 0.00192 ppm 0.00019 % 1.00000 3.0849 msec	
EVM/MER EVMPeak PmblEVM PilotEVM DataEVM FreqErr SymClkErr CPE SymCCorr TimeOffset QOffset QOffset	-48.25 -35.298 -49.824 -48.858 -48.224 6.6534 0.00197 0.00011 0.99999 9.0670 -83.266	···· ··· ··· m ···	-48.25 dB -35.298 dB -49.824 dB -48.858 dB -48.858 dB -48.224 dB 6.6534 H2 0.00197 ppm 0.00011 % 0.99999 9.0670 msec -83.266 dB	EVMPeak PmbleVM DisteVM DataEVM FreqEr SymCikEr CPE SymCcor TimeOffset IQOffset	-52.305 -38.788 -54.319 -53.205 -52.269 6.6678 0.00192 0.00016 1.00000 3.0849 -85.793		-52.305 dB -38.788 dB -54.319 dB -53.205 dB -52.269 dB 6.6678 Hz 0.00192 ppm 0.00016 % 1.00000 3.0849 msec -85.793 dB	
EVMPeak PmblEVM PilotEVM DataEVM FreqErr SymClkErr CPE SyncCorr TimeOffset QOffset QQuadErr	-48.25 -35.298 -49.824 -48.858 -48.224 6.6534 0.00197 0.00011 0.99999 9.0670 -83.266 -0.00052	*** *** *** *** *** m	-48.25 dB -35.298 dB -49.824 dB -48.858 dB -48.858 dB -48.224 dB 6.6534 Hz 0.00197 ppm 0.00011 % 0.99999 9.0670 msec -83.266 dB -0.0005 deg	EVMPeak PmblEVM PilotEVM DataEVM FreqErr SymCKErr CPE SyncCorr TimeOffset IQOffset IQQuadErr	-52.305 -38.788 -54.319 -53.205 -52.269 6.6678 0.00192 0.00016 1.00000 3.0849 -85.793 0.00002		-52.305 dB -38.788 dB -54.319 dB -53.205 dB -52.269 dB 6.6678 Hz 0.00192 ppm 0.00016 % 1.00000 3.0849 msec -85.793 dB 0.00002 deg	
EVMPeak PmblEVM PilotEVM DataEVM FreqErr SymClkErr CPE SyncCorr FimeOffset QOffset	-48.25 -35.298 -49.824 -48.858 -48.224 6.6534 0.00197 0.00011 0.99999 9.0670 -83.266 -0.00052 0.00001	*** *** *** *** m ***	-48.25 dB -35.298 dB -49.824 dB -48.858 dB -48.858 dB -48.224 dB 6.6534 H2 0.00197 ppm 0.00011 % 0.99999 9.0670 msec -83.266 dB	EVMPeak PmbleVM DisteVM DataEVM FreqEr SymCikEr CPE SymCcor TimeOffset IQOffset	-52.305 -38.788 -54.319 -53.205 -52.269 6.6678 0.00192 0.00016 1.00000 3.0849 -85.793 0.00002 -0.00008		-52.305 dB -38.788 dB -54.319 dB -53.205 dB -52.269 dB 6.6678 Hz 0.00192 ppm 0.00016 % 1.00000 3.0849 msec -85.793 dB	

Figure 10. EVM without IQ-NC (Trace B) compared with IQ-NC EVM (Trace D). In this example, IQ-NC provides a 4 dB improvement in EVM.

Software Features

Core features

Feature	Description
Signal acquisition	
Supported subcarrier types	Data, pilot, preamble, idle
Resource modulation formats supported	BPSK, QPSK, 8PSK, 16QAM, 32QAM, 64QAM, 128QAM, 256QAM, 512QAM, 1024QAM, 2048QAM, 4096QAM, 8192QAM,16384QAM
Input configuration file formats	.txt, .csv
MIMO spatial streams supported	2x2, 3x3, 4x4, 8x8 using supported hardware
Format adjustable parameters	
Signal format parameters setup	
Preset to standard	WLAN 802.11a, 802.11ah; DAB mode 1, 2, 3, 4; DVB-T/H mode 2k, 4k, 8k; DVB- SH 1k; ISDB-T (mode 3); 5G NR provided as demo signal.
Configuration file setup	
Load pilot IQ values	Loads text file listing target IQ values for each defined pilot
Load preamble IQ values	Loads text file listing target IQ values for each defined preamble subcarrier
Load resource map	Loads text file listing subcarrier type, user ID, antenna number, all antennas for each subcarrier in each
Load resource modulation	Loads text file listing expected constellation for each subcarrier in each symbol
Manual configuration parameters	S
Cross-correlated EVM	Enable the measurement for ccEVM (requires the 89601EVMC license)
FFT length	Set the FFT length used for OFDM transmission; must be a power of 2 up to 64K
Guard interval	Set the guard interval (cyclic prefix)
Guard lower subcarriers	Set the number of lower guard subcarriers which will be ignored for results
Guard upper subcarriers	Set the number of upper guard subcarriers which will be ignored for results
OFDM system sample frequency	Set the OFDM FFT sample rate
Format details	
Pilot IQ values	Specifies ideal I-Q values for each subcarrier identified as a pilot
Preamble IQ values	Specifies ideal I-Q values for each subcarrier identified as a preamble tone
QAM identifiers	Each entry provides index into QAM Levels array
QAM levels	Each entry in array specifies modulation type
Resource map	Specifies the subcarrier resource type (preamble, pilot, data, etc.)
Resource modulation	Specifies modulation used on each resource (subcarrier/symbol time)
Resource repeat index	Tells the analyzer where to loop after it reaches the end of the Resource Map file; for resource maps which include a repeating pattern of similarly-formatted symbols so that it is only necessary to define the pattern once
Burst signal status	Specifies whether the signal is bursted (pulsed) or continuous
Number of transmitter antennas	Set the number of transmitter antennas; max 4

Transmitter window beta	Set how much windowing was used in the transmitter to smooth the transition between symbols
Boosting details	
QAM identifier boost levels	Set the boost power level for each QAM identifier
Unknown pilot boost level	Set the boosting level used for unknown pilot subcarriers
User boost levels	Set the boost power level for each user
Time parameters	Accesses the signal capture parameters used to configure the pulse search length and isolate a segment of the time record for further viewing and data analysis
Measurement interval	Set the time length, in symbols, of the measurement region used for computing and displaying the trace data results
Measurement offset	Set the time offset, in symbols, to the measurement region used for computing and displaying the trace data results
Result length	Set the maximum number of symbols analyzed, including preamble symbols
Result length selection	Enable/disable auto-determination of result length
Search length	Set the measurement acquisition length, in seconds
Pulse search details	Sets pulse search and automatic threshold status (on/ off); sets pulse search threshold value in dB
Equalizer and tracking	Specifies equalizer and pilot tracking parameters
Equalizer training	Equalizer training using any/all of data, DC pilot, pilots, preamble
Equalizer details	Sets details of equalizer behavior
Averaging mode	Sets averaging mode used when averaging equalizer across multiple symbols
Pilot tracking	Track any/all of amplitude, phase, timing
Advanced parameters	Accesses advanced parameters used to adjust demodulation measurements and displays
EVM normalized by reference	Specifies whether EVM calculations are normalized by the IQ Reference signal power
Extended frequency lock range	Set extended frequency lock range plus lock range width, in subcarriers
Mirror frequency spectrum	Enables/disables time-domain conjugation, which mirrors the frequency domain around the center frequency
Symbol time adjustment	Set symbol time adjustment to adjust the useful symbol time period (TFFT) within the OFDM extended symbol time period (TS)
Synchronization mode	Set the synchronization mode used when synchronizing to the signal, either time correlation or cyclic prefix
Display parameters	Enables/disables the display of any/all: Data subcarriers, EVM in %, pilot subcarriers, preamble subcarriers, subcarrier color based on user ID, sync correlation in %, null subcarriers
Normalize IQ traces	Enables/disables normalization of IQ Meas, IQ Ref, and Error Vector traces
Synchronization region	When automatic is selected, the full resource map for defining the reference signal for synchronization is utilized and the first 10 symbols of the acquisition are searched to synchronize the measured signal with the reference signal. When manual is selected, users can manually define the reference interval/offset and search interval/offset for synchronization region.

Measurements results

Feature	Description
Channel data	These results are available for data appearing at channels 1 to n (n \leq 8) of the measurement platform
CCDF summary	Summary data including average and peak power, power level at different percentages of the power, and total number of points accumulated.
CCDF	Displays the complementary cumulative distribution function (CCDF) for the selected input channel
CDF	Cumulative distribution function for the data in the measurement interval
Correction	Correction curve used to correct for the frequency response of the input hardware and input digital filtering
Instantaneous spectrum	Spectrum computed before data is averaged
PDF	Probability density function (PDF) of the signal
Raw main time	Raw time data read from the input hardware or playback file for the selected channel, prior to correction or resampling
Search time	Time record data after resampling and time adjustment, used to search for the pulse (or burst)
Spectrum	Averaged Instantaneous Spectrum display
Time	Time record before digital demodulation and after pulse search
Demodulation data	These results are available for each spatial stream in MIMO systems
Channel frequency response	Channel frequency response for the specified spatial stream and measurement hardware input channel N (where N is the number of the channel)
Common pilot error	Shows the difference between the measured and ideal pilot subcarrier symbols
Eq impulse response	Equalizer impulse response between the selected data stream and input channel N (where N is the selected channel)
Inst Ch frequency response	Non-averaged Ch Frequency Response trace data
Error vect vs. sample (Sym overlay)	Shows the error vector values for each point in the pre-OFDM time grid (sample x OFDM symbol). To view the Error Vector data after the FFT is performed, use the Error Vect vs. Carrier (Sym overlay) trace
Error vect vs. sym (Sample overlay)	Shows the error vector values for each point in the pre-OFDM time grid (sample x OFDM symbol). This trace contains the same data as the Error Vector vs. Sample (Symbol overlay) trace, but with OFDM symbols on the x-axis and samples on the z-axis (overlay axis)
Error vect vs. carrier (Sym overlay)	Shows the error vector values for each point in the OFDM time-frequency grid. This trace contains the same data as the Error Vect vs. Sym (Carrier overlay) trace, but with subcarriers on the x-axis and OFDM symbols on the z-axis (overlay axis)
Error vect vs. sym (Carrier overlay)	Shows the error vector values for each point in the OFDM time-frequency grid (subcarrier x OFDM symbol). The x-axis represents OFDM symbols, while the overlay unit (z-axis) represents subcarriers
IQ measured	Measured IQ symbol values of the subcarriers, with one complex value for each subcarrier for each symbol-time in the burst
IQ reference	Reference IQ symbol values of the subcarriers, with one complex value for each subcarrier for each symbol-time in the burst
OFDM Burst Info	Summary table of basic burst information grouped by subcarrier type and modulation format. Burst information includes EVM, Power, modulation format and resource unit information. Resource type = "All" includes all Preamble, Pilot, and Data subcarriers

OFDM Error Summary	Table providing signal quality metrics of the demodulated signal within the measurement interval: EVM/MER, pk EVM, preamble EVM, pilot EVM, data EVM, frequency error, symbol clock error, CPE, sync correlation, time offset, IQ offset, IQ gain imbalance, IQ quadrature error, IQ time skew, and power
RE power 3D	Resource element (RE) power per symbol and per subcarrier
RE power heatmap	Two-dimensional representation of RE power, with symbols on the x-axis, carriers on the y-axis, and power (in dBm) represented by color.
RMS error vector spectrum	Computed difference between IQ Measured vector value and IQ Reference vector value, a complex value at each subcarrier for each OFDM symbol. The RMS Error Vector Spectrum is the RMS average EVM for each subcarrier for all symbols within the burst
RMS error vector time	Average error vector magnitude at each symbol-time
Symbols	Demodulated symbol data (raw binary bits) for each OFDM symbol and subcarrier detected
Cross channel data	This data incorporates all input channels and provides data for MIMO measurements
Cross-correlated error vector vs. carrier	Similar to the RMS Error Vect vs. Carrier trace, but it is calculated using the results of two measurements, similar to the ccEVM metric
Cross-correlated error vector vs. symbol	Similar to the RMS Error Vect vs. Sym trace, but it is calculated using the results of two measurements, similar to the ccEVM metric
Cross-correlated EVM summary	Shows the calculated cross-correlated EVM results when Cross-Correlated EVM is selected (true). The first row of the matrix displays the overall result. For MIMO signals, a separate result for each stream will be shown after the overall result
MIMO channel frequency response	Shows an overlay of all the individual Stream(N) Channel(N) Frequency Response trace data results for the current MIMO measurement; enables easy viewing and comparison of each measurement stream(N) channel(N) frequency response trace data result on a single display
OFDM burst info	Table showing what fields were detected in the burst along with EVM, power level, modulation format, and number of resource units for each field
OFDM equalizer MIMO condition number	Vector containing the "condition number" of the equalizer channel frequency response matrices; one condition number value for each subcarrier
OFDM error summary	Table providing a wide range of error information per physical channel plus an average of all channels
OFDM MIMO info	Shows a MIMO measurement's power per RU, phase offset and TAE for each antenna port

Key Specifications

This technical overview provides nominal performance specifications for the software when making measurements with the specified platform. Nominal values indicate expected performance, or describe product performance that is useful in the application of the product.

For a complete list of specifications refer to the measurement platform literature.

X-Series signal analyzers

Accuracy	PXA with Option B1X	MXA with Option B25	EXA with Option B25		
Accuracy conditions	Sample IEEE 802.11a/g OFDM signal; 64 QAM format; Fc= 2.412 GHz; span = 25 MHz; 20 averages; input range = –20 dBm and signal level within 2 dB of full scale;				
Residual EVM					
Equalizer training = preamble and data and pilots; pilot tracking = timing and phase	< –47 dB	< –46 dB	< –46 dB		

Ordering Information

Software licensing and configuration

Flexible licensing and configuration

- Perpetual: License can be used in perpetuity.
- Subscription: License is time limited to a defined period, such as 12-months.
- Node-locked: Allows you to use the license on one specified instrument/computer.
- **Transportable**: Allows you to use the license on one instrument/computer at a time. This license may be transferred to another instrument/computer using Keysight's online tool.
- **Floating**: Allows you to access the license on networked instruments/computers from a server, one at a time. For concurrent access, multiple licenses may be purchased.
- **USB portable**: Allows you to move the license from one instrument/computer to another by end-user only with certified USB dongle, purchased separately.
- **Software support subscription**: Allows the license holder access to Keysight technical support and all software upgrades

Basic vector signal analysis and hardware connectivity (89601200C) (required)

Custom OFDM modulation analysis (89601BHFC)

Software license type	Software license	Support subscription
Node-locked perpetual	SW1000-LIC-01	SW1000-SUP-01
Node-locked time-based	SW1000-SUB-01	Included
Transportable perpetual	SW1000-LIC-01	SW1000-SUP-01
Transportable time-based	SW1000-SUB-01	Included
USB portable perpetual	SW1000-LIC-01	SW1000-SUP-01
USB portable time-based	SW1000-SUB-01	Included
Floating (single site) perpetual	SW1000-LIC-01	SW1000-SUP-01
Floating (single site) time-based	SW1000-SUB-01	Included
Floating (regional) perpetual	SW1000-LIC-01	SW1000-SUP-01
Floating (regional) time-based	SW1000-SUB-01	Included
Floating (worldwide) perpetual	SW1000-LIC-01	SW1000-SUP-01
Floating (worldwide) time-based	SW1000-SUB-01	Included

One-month KeysightCare Support and subscription

Software license	Software license type
SW1000-SUP-01	1-month support subscription renewal for perpetual license

Additional Resources

Literature

- 89600 VSA Software Brochure, literature number 5990-6553EN
- 89600 VSA Software Configuration Guide, literature number 5990-6386EN
- 89600 VSA Software Basic Vector Signal Analysis and Hardware Connectivity Option 89601200C -Technical Overview, literature number 5992-4210EN
- Quickly Validate Designs for DOCSIS 3.1 Compliance Application Brief, literature number 5991-4301EN

Web

- www.keysight.com/find/89600
- www.keysight.com/find/89600_hardware
- www.keysight.com/find/89600_software
- www.keysight.com/find/vsa_trial

Mess- und Prüftechnik. Die Experten.

Ihr Ansprechpartner / Your Partner:

dataTec AG E-Mail: info@datatec.eu >>> www.datatec.eu

Keysight enables innovators to push the boundaries of engineering by quickly solving design, emulation, and test challenges to create the best product experiences. Start your innovation journey at www.keysight.com.

This information is subject to change without notice. © Keysight Technologies, 2018 – 2024, Published in USA, October 18, 2024, 5992-4238EN.EN